APPLICATIONS OF MATRICES AT SCHOOL LEVEL T J PLETCHER

Introduction

In this talk I am mainly concerned with the applications of matrix algebra
which it is possible to study with school pupils aged 15-18. It will be
necessary for me to say a little about the English school system in order to
compare it with the Austrian system, and I will also say a little about the
matrix algebra which is, and which has been, studied in English schools by
pupils aged 11-16.

In the Lehrplan for the Oberstufe in Austria we find:-

5. Klasse Lineare Gleichungen mit zwei und drei Variablen
| Wiederholung einiger geometrischer Abbildungen
Vektoren der Ebene und des Raumes
[tineare Ungleichungen in zwei Variablen
Lineare Optimierung
Lineare Abhingigkeit; Rang eines Gleichungsystems.]

The material in square brackets is only in the courses for the Realistischen
Gymnasium, Naturwissenschaftlichen Realgymnasium and the Mathematischen Gymna-
sium. Matrices are not needed for the study of the above items, but all these
items provide possible applications for matrices.

6. Klasse  Additionstheoreme fiir die Sinus und Kosinusfunktion
[ﬁechnerische Behandiung geometrische Abbildungen unter
Verwendung von Matrizen
Addition und Multiplikation von Matrizen./
Again, the first item does not need matrix algebra, but it provides an
application of it; indeed the book by Szirucsek et al (19) introduces matrices
in connection with the problem of handling rotations and their composition.

7. Klasse Der Korper der komplexen Zahlen.
If one wishes i1t is possible to demonstrate to pupils that complex numbers can be
seen as 2x2 matrices of a special kind.

can
We fonclude that the study of watrices is included only in some of the
mathematice courses of the Oberstufe, and study of the textbooks shows that
the main application of matrices is to transformations of the Cartesian plane,
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Further, matrices can be applied to some other areas of the course, although

they are certainly not essential.

The Lehrplan does not explicitly mention the inverse matrix, although it is
included in some textbooks. Neither Lehrplan nor textbooks include eigen~

values and eigenvectors. This observation is relevant when we come to consider

the work in some English courses.

The didaktische Grundsdtze of the Austrian Lehrplan contain the following:-

Beider Einfihrung eines neuen Stoffgebietes sind als Ausgangspunkte

nach Moglichkeit Probleme aus anderen Wissenschaften oder aus dem taglichen
Leben zu wahlen. Im Anschluss an motivierende Beispiele ist eine Formalisie-
rung oder Exaktifizierung in Form der zu behandlelnden Definitionen und

Lehrsitze durchzufthren . . . .

Schliesslich ist die Behandlung eines bestimmten Lehrstoffgebietes durch

méglichst zahlreiche und vielfaltige Anwendungen und Jbungsaufgaben abzuschliessen;
P . Bei der Anwendungen sind die vielfaltigen Querverbindungen

zwischen der Mathematik und anderen Wissenschaften, insbesondere den Natur-
wissenschaften, der Technik, den Wirtschafte- und Sozialwissenschaften

sowie der Philosophie (mathematische Logik) aufzuzeigen.

Durch Klarstellung der dabei gemachten Annahmen, insbesondere der Vereinfachungen,
sowie allenfalls durch Beispiele, bel denen derselbe Sachverhault mit Hilfe
verschiendener Modelle behandelt wird, sollen die Moglichkeiten, die Schwierign-
keiten und die Grenzen der Anwendbarkeit der Mathematik aufgezeigt werden.

The aim of my talk today is to show how matrices and linear algebra can be
approached in this spirit. The examples which follow are my own attempis to
realise these intentions - they do not illustrate genersl practice in England.

But first I must explain the English school system.

The educational system in England

The national educational system is based on a partnership between central
government and local authorities. The Department of Education and Science

(the Ministry) does not manage schools itself, neither does it employ teachers
or prescribe textbooks or syllabuses. The courses of study for the abler pupils
are in fact determined closely by the examinations for the General Certificate
of Education (GCE). These examinations are conducted by eight independent
examination boards. They are taken at two levels - O level, which is generally
taken at age 16, and A level, which is taken at 18. 20-25% of the population
(ie the age group) take O level. There are examinations in mathematics for
other pupils but I cannot explain this system in detail hers. Historically the
GCE was an examination for grammar schools. We are planning a unified system
of examinations moresuited to comprehensive schools and we are at the moment

in a stage of transition.
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A level is an examination in separate subjects. 1In England it is possible

to specialise at this level more than in other countries and usually a course
at this level contains only three main suﬂjects. It is therefore possible for
pupils, even those going on to universities, to choose courses which contain no
mathematice at all., In practice each main subject takes about one fifth of the
time. Another fifth will be given to general studies (including perhaps
English, religion, arts and music, games etc) and the remaining fifth to
independent study.

It is possible to take mathematice as a double subject, ie for two fifths of
the time. When this is done the student usually takes "Mathematics" and
"Further Mathematics", although sometimes the courses are described as "Pure
Mathematice" and "Applied Mathematics".

Therefore, A level pupils of the ages 16-18 may be studying,
i) no mathematics at all,
ii) single mathematics
ii1) double mathematics. (Most common is Maths and Further Maths)

Note that most of these mathematics courses will contain some applied
mathematica, either theoretical mechanics or statisticas or both. We have a
long tradition of studying mechanics as part of mathematics courses as well
as part of physics courses.

The school pupils studying mathematics as a main subject at A level form about
10% of the total age group (ie those at school and those outside school), and of
these only about 2 in 10 study double mathematics. You will see therefore that
these courses are given only to a quite small, elite group of pupils. As
Previously said, examination syllabuses are not prescribed centrally. Examina-
tions at O and A level are conducted by eight examination boards. Each school
can choose its examination board, and furthermore there is usually a choice of
mathematics syllabuses within each board. This means that there is a large
number of possible mathematics syllabuses at this level. Universities complain
that this is a source of confusion and difficulty, and moves are taking place

to produce more uniform pattems,

The matrix algebra contained in English O level syllabuses

Mathematics courses for pupils aged 11-16 in English schoole are "differentiated”.
That 1o to say pupils of different abilities spend about the same time on
mathematics but some get much further than others. In this talk I am concerned

pPrincipelly with the work done on O level courses taken by the abler pupils,
frow whom come those who subsequently study mathematics to A level.
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I can only simplify a complex situation, and say there are three types of

Couxse.

i) Traditional courses with no matrix algebra at all.

ii) Modern courses, of which the School Mathematics Project course is the
most well known. The content of such courses is described below.

iii) The St Dunstan's course, developed in the early 19608 at an independent
school in South London, carried matrix work much further than anywhere

else,

It is therefore an extreme case of particular interest to an

international audience.

There are different editions of the SMP course, but generally speaking we might

find:~-

Year 1 (114)
Year 2 (12+)

Year 3 (13+)
Year 4 (14+)

Year 5 (15+)

No matrices

Incidence matrices of networks. Matrices as tables of
information

Matrix multiplication (motivated perhaps by scoring systems
in games).

Matrices of geometric transformations, composition of
transformations and matrix multiplication.

Revision of the above work., Inverses of 2 x 2 matrices.

Those who followed the St Dunstan's course were examined on essentially the
same range of work as this, but the textbooks (13) covered a much wider range
of ideas, treated in an elementary fashion. These included matrix codes, the

determinant of a matrix (2 x 2 case only), group structure and groups of
matrices, and work on probability matrices leading to eigenvalues and
eigenvectors (although only for the 2x2 case).
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Matrix algebra in A level syllabuses

I have explained that there is a variety of courses leading to A level.
Because of the eight examination boards, because of single and double
mathematics, and because there are syllabuses which are traditional, modern
(and in-between) I must again simplify a complex situation. The amount of
matrix algebra varies greatly. Three levels are typical.

i) There are traditional courses with none.

ii) In a typical single mathematics course one might find matrices in
connection with linear equations, linear dependence and geometrical
transformations; inverse matrices (usually no more than the 3 x 3
case); perhaps (AB)‘1 = B~1 A~1; perhaps applications to electrical
circuits (SMP).

i1i) Modern courses in double mathematics might include more work on
vector spaces, more applications to geometry, and eigenvalues and
eigenvectors (eg SMP and the new London syllabus).

when any techniques are introduced into any course it is important to consider
the initial motivation, the applications, and the range of exercises which will
be possible with the technique.

In the study of matrices there are two fundamental landmarks.

i) the inverse matrix,

ii) eigenvaluea and eigenvectors.

Some elementary courses introduce inverses of 2x2 matrices only - and work
these out by an algebraic trick which is quite untypical of later developments.
This is bad pedagogy. Likewise (in my view) it is bad pedagogy to waste time
learning to invert 3x3 matrices by using 2x2 minors. A more general algorithm
should be studied.

With more advanced courses it is clearly a problem whether or not to go as far
as eigenvectors and eigenvalues. These are the key to a rich store of
applications, but the techniques appear complicated even in {he 3x3 cases., I
believe that if matrices are applied to practical problems {eg in probability
or in mechanics) eigenvectors can be studied more easily. In some cases,

such as mechanics, physical intuition indicates the eigenvectors, and the
calculations rsquired in the context of the application are often much easier
than abstract examplcs on the general theory might suggest. Time permitting I
will give exazmples of this later.




Applications at school level

The following applications are easily accessible in school texts in the

English and German languages and I will say no more about them:-

i) geometrical applications of 2x2 matrices,
ii) applications to scheduling in business and industry,
1i1) Stochastic matrices and Markov chains (5).

The first few applications discussed below show the teacher a broader, more
philosophical view of matrices than is usual in school texts. We see how
matrices describe relationships and how the normal definition of matrix
multiplication is only one of many possible definitions - depending on the
type of relationship involved. The remaining examples relate to the
physical sciences (electricity, optics and mechanics) and to statistics.

Matrices describing relationships

In elementary teaching the most common approach to matrices is by way of their
application to linear transformations. A matrix embodies a linear transfor-
mation. There are other approaches which have certain advantages. Matrices
often describe relationships. It seems to me important for teachers to realise
this aspect of matrices even though they may feel that they do not have time
within the framework of these syllabuses to develop it. Certéinly teachers who
teach abstract exercises on matrices and who admit that they do not kmow any
applications of these ideas need to appreciate this very general property of

matrices.

The first example assumes some preliminary knowledge of matrix algebra, but I

include it as a very elementary example and I do not see anything like it in school

courses. It seems to me to offer possibilities for classroom discussion.

Example 1

PFour people meet together, their ability to communicate in German, French and
English is indicated in the following matrix M.

G P E

a 1 1 1

M = b . 1 1
c . . 1

d {1 1 R
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T T
Form the matrix products MM and M M, and find meanings for the terms in these

matrices
3 2 1 2
2 2 1
MﬁT'= 2 2 1 1 ﬁTﬁ - 5 3 5
1 1 1 0 1 2 3
2 1 0 2

The situation can also be represented (modelled) by a network

a
G
b
F
c
E
4

Some school syllabuses in England give a lot of space to the incidence matrices
of networks, but they do not usually go on to consider many applications.

Important areas of application open up if we consider networks more generally.

Example 2

It is poasible to use network problems to motivate matrix multiplication in the
ordinary sense. For example we can consider an airline network.

In this diagram the numbers indicate the number of alternative ways of flying
(eg different airlines) between the airports in different countries. Between
country X and country Y the possibilities are indicated by the matrix.
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What is the corresponding matrix indicating the possibilities between X and 27
Direct consideration of the possibilities gives the matrix.

17 3
32 48

The general law of combination is the familiar ¢ , = i:are b,

Put it is more instructive in this example to consider what happens if the
mmbers indicate other things. For example if the numbers on the links indicate
the shortest times or the shortest distances the appropriate combination is.

- 3 4

¢ n%n (ars + bst).

rt =

If the numbers indicate the maximum load that a link will carry we have

There are many other laws of combination corresponding to different
interpretations which can be given to the network (7,8).

I have not seen much of this done at school level although this is & splendid
modelling example. Even if we do not consider these examples guitable for school
pupils I think it is instructive for teachers to consider how matrix
multiplication embodies very fundamental structural relationships - the

series parallel properties of networks.




Example 3

As a boy at school I had to learn the complicated relationships between the
traditional Imperial measures of length.

12 inches = 1 foot

3 feet = 1 yard
22 yards = 1 chain
10 chains = 1 furlong
8 furlongs = 1 mile.

As a result of this, until a few years ago the diary which the Department of
Education and Soience provided for my use contained the table,

ins. ft. yds. ch. fur. mls.
ins. 1
ft. 12
yds. 36 3 1
ch. 792 66 22 1
fur. 7920 660 220 10
mls. 63360 5280 1760 80 8 1

This table seems to have a very complicated structure. How is it constructed?
The essential conversions are contained in,

e -l
If we call the original lable M, then

2

M =1 +¢C+¢C +¢ +0¢t4+?,

all higher powers of C are zero.

In fact,

M= (1-0),

&
and ve haveqleontief inverse (3).




Examples in physics

The next few examples are all taken from physical science. Whilst some
knowledge of physics is necessary 1in every case the essential knowledge is
quite small - indeed it is usually only the appreciation of a single important
principle. As some teachers may have only a small knowledge of physics we will
explain what is involved each time.

It is important to ask whether the methods described below are really helpful
to the science teacher or not. Science teaching has developed without the
pupils (or the teachers) knowing matrix algebra, and school science always has
other ways of discussing the problems which follow. However, input-output
systems are important in science, and we are going to show how the same

mathematical ideas apply to three quite different areas of physics,

Pour-terminal networks

Example 4

The first application is to a problem in electricity. We need the simplest
knowledge of current and voltage; and we need to know Ohm's law,

voltage = current x resistance.

Imagine that we have a "black box" with two input terminals and two output
terminals. An electric current flows in to the top right terminal and flows
out of the top left hand terminal. The lower terminals are both earthed

(ie they remain at zero voltage). We imagine that we have ways of measuring
the input and output voltages and currents.

(s i
-6 X - o x -
Veut Vin
Y - Y
. & . 4
A

The relation between the input and output voltages and currents depends on
the internal connections in the box, but for many electrical components the
relation is linear. For example the box may contain a resistor ¥ wired in as

shown.

B T R —

TP —

P o St 2 n




r

By considering the voltage charge across the resistor,

vout = vin - rein.

Also, current is conserved 8o

out = lin.

‘These equations may be written with matrices as follows,

vout in

iout 0 1 iin

If the box is wired internally in a different manner,

|

YUy v
w

b
!

then there is no change in the voltage, but a current vin/s flowa down through

the resistor and the current flowing along the top wire is reduced by this
amount. Hence the equations are,

vout 1 0 vin
iout -1/s8 1 iin

In each case the box is replaced by a matrix, and we can in fact take a series

of boxes and replace each by its matrix in order to calculate the total effect.
Thus a circuit,
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C B A
a o O . 4 [ 4 -0 [ o
— o — $ &

vout in

iout in

The two matrices given above enable us to calculate the properties of more

complicated circuits such as
r r
s% 5% 5% $

This circuit will have a matrix SRS ... SRS.

By using complex numbers this theory can be extended to circuits with
capacitors and inductances, and it is helpful in the study of electrical

filters.

More general electrical networks can be studied using special kinds of
incidence matrix. There is not space to go into the details here, but an
approach at school level is contained in references (6, 16, 17).

Optical theory and matrices.

Methods similar to those used above for four-terminal networks can be applied
to the theory of lenses as they are studied in school courses on physics. As
a ray of light proceeds along the axis of an optical instrument its direction
is changed in various ways. It is sometimes possible to describe these
transformations by matrices. It is something of a problem to identify the
parameters which change linearly, but it can be shown that if we make the
assumptions about paraxial rays which are usually made in school physics then
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the parameters y (denoting the displacement of the ray from the optical
axis) and 6 (deonoting the inclination of the ray to the optical axis) have

the required properties.

Before considering the details of the problem we must make a few remarks about
notation. In the electrical filter diagrams above we drew the current flowing
from right to left to match the arrangment of the matrices. In elementary
mathematics we most often use matrices to operate on column vectors, and

write our operations from right to left. But it is equally possible to operate
on row vectors and write our matrices from left to right. The student needs
eventually to become accustomed to both methods - although we may not want to
introduce him to both at school.

In optical diagrams light rays usually go from left to right, so here we will
write our matrix operators the same way, and this entails working with row

vectors.

Example p)

A ray of light proceeds through an optical inétrument such as a telescope or

a microscope. As it goes it is displaced in various ways which we have to study.
In order to keep the problem simple ia assume that the displacements are "small" -
that is to say, first order approximations are sufficiently accurate.

The state of the ray of light can be described by a row vector (y,8), where y
is the lateral displacement of the ray from the axis, and & is the angle of
inclination to the axis, measured in radians.

If the ray travela along the axis for a distance x then (y,8) becomes

(y + x8, 6). In this calculation we are using the usual approximations when
9 is small. The change in the state of the ray is thus described by the
matrix relation.

=10

3rza




If a ray passes through the interface between two optical media of
refractive indices n, and n, then a relation studied in school physics

applies.

n, n,

The fundamental law is

= 9

sin r n,

wvhere i and r are the angles of incidence and the angle of refraction.

Making the first order approximation once again, we have this time

[+ ] |oaal-[7°].

The value of y is unaltered butthe ray undergoes an instantaneous change in
direction at the interface.

In a similar way we can get a matrix representation of each optical feature.
The ontput at each stage is always the input to the next stage. Assoclated

with a curved interface between two optical media, with radius of curvature

R, there is a matrix
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Associated with a converging lens of focal length f there is a matrix,

1 Ve
0 1

and so on.

If these examples were used in a school it would be necessary to discuss
details of notation with the science teacher. 1In particular, various sign
conventions are used in optics and it would be helpful to use the one with
which the pupils were familiar.

From these matrices it is possible to derive all the usual formulae at this
level, and furthermore the matrix method indicates how the ideas could be
applied to thick lenses, to lenses with a space between them, and to a range
of more complicated problems.

Elastic displacements of mechanical systems

We will consider how matrices can describe distortions in an elastic structure
such as a suspension bridge or an aircraft frame, but we will consider only
very simple examples. Demonstration apparatus can be made from elastic, from
thread and from wooden beads or from similar material.

Example 6

First we consider three particles, equally spaced on an elastic string. They
are displaced by lateral forces. We consider lateral displacements only and
ignore gravity.

There are tensions in the strings and the system is in equilibrium. The
forces may be seen as inputs and the displacements of the particles as outputs.
We assume that for small displacements the relations between the forces and
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displacements are linear. (1t will be necessary for the teacher to
discuss very carefully with the class what this means. )

We now consider what happens when a unit force is applied to the first
particle. The displacements of the three particles are in the ratio 3:2:1,
and this information can be recorded in the first column of a matrix.

3 . .
2 . .
1 . .

In a similar way, if we apply a unit force to the third particle the
displacements are in the ratio 1:2:3. This we can also record:

Now if a unit force is applied to the second particle it is clear that the
displacementsa are in the ratio 1:2:1, but it is not clear how the magnitudes
of the displacements in this case relate to the magnitudes in the other cases.

At this point I will introduce a piece of theory which I will not explain.
We can prove that matrices which describe systems of this kind are always
symnetric, provided that energy is conserved in the system. (The proof of
this is short and simple.) If we assume this fact we see that the middle

column of our matrix must contain 2,4,2.

3 2 1
2 4 2
1 2

Phis matrix is called the flexibility matrix of the system. It is a table
which records the displacements of the particles when unit forces are applied.
In position (r s) of the flexibility matrix we record the displacement at
point r when a unit force is applied at point s (with zero forces elsewhere).

The matrix now enables us to express a more general relationship. If forces

(p, P, » P, ) are applied simultaneously then the displacements are

(x » x, x, ), where

t
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Xy 3 1 P
X3 . R 2 P,
X, 1 2 3 P,

How can we calculate the forces if we observe the displacements? This is
an application of the inverse matrix. What is the inverse matrix in this

cage?

Example T

We may find the matrices which describe other systems. With three equally
spaced particles on a vertical string, with gravity acting, and with
horizontal perturbing forces, the flexibility matrix is

11 5 2
5 5 2
2 2 2

where the particles are numbered from the bottom.

What is the inverse matrix this time?

The inverse of the flexibility matrix is sometimes called the stiffness
matrix.v If the stiffness matrix is denoted by M, then we have p = Mx.

Note that in position (r s) of the stiffness matrix we have the force acting
at the point r when there is a unit displacement at point s (with zero
displacements elsewhere),

The importance of these matrices is not so much to the static problems we have
considered as to dynamic problems. If systems of this kind are given a shock

theaﬁtpey continue to vibrate under their own internal forces (resonance);




- 28 -

they have natural modes of vibration at certain resonant frequencies. This
can be a dangerous condition. If students are familiar with simple harmonic

motion in physics then we can explain how structures resonate.

A particle performs a simple harmonic motion when the restoring force is
proportional to its displacement. Therefore we must ask - under what
conditions is the reatoring force on each particle proportional to the
particle's displacement? Algebraically this condition is p =NX ,

But we have seen that the force p is always given by p = Mx, so when these

natural modes of oscillation occur

Mx =A£r

ﬂha teacher is warned that certain care is needed with this argument in

the classroom. With beginners it will be necessary to distinguish carefully
between perturbing forces and restoring forces, and to overcome any
difficulties which the students have with the algebraic signs_.]

The physical problem leads to the equation which defines eigenvectors and
eigenvalues. These jdeas are motivated by this physical application, and
there are good historical and good didactical arguments for approaching them
in this way. There are many interesting examples in which physical intuition
indicates eigenvectors more easily than algebraic calculation does - and so
these make good teaching exercises (9). See also references (10, 11).

Matrices in statistics

The Austrian didaktische Grundsatze refer to the value of examples taken
from other areas of the school curriculum. The problem of drawing a straight
line to give the best fit to a set of data points occurs in many sciences and
of course in statistics. This can be gtudied at school level.

¥irst we consider the familiar problem of finding the arithmetic mean of a
get of numbers; but we use an unexpected method. For this sample problem
the method may seem unnecessarily complicated, but the method is very useful
with more difficult questions.

e s S St e e e e
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fixample 8

Given the numbers 10, 12, 17, which single number m approximates to them

"pest"? (We have to define the meaning of "best").

Consider the sum of the squares of the differences of the numbers from m,
(10-m)% + (12—m)2 + (17—m)2 .

We define the "best" value of m to be the value which minimises this sum

of squares.

In 3-space this is the square of the distance between the point p(10, 12, 17)
and the point M (m,m,m), which may be seen as a variable point on the line
through O in the direction L1,1,]] .

A Plie, 13,00
oo}

M ("1"."')

M must be chosen to minimise M.

This means choosing M so that PM is perpendicular to OM.

Hence,

1x(10-m) + 1x(12-m) + 1x(17-m) = O,
80

m = (10 + 12 + 17)/3.

This is only the ordinary arithmetic mean, but it is the method which is
interesting. With n variables it might be thought that the proof is in

n dimensions. In a sense it is, but in fact it is in a two-dimensional

subspace only.

A A VS o Bt AR T
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It does not concern us here, but this approach is a very helpful one to the
study of variance in statistics. We will merely point out that with n
variables the quantity PM2 is equal to“(\dz, where & 2 is the variance. This

enables easy geometrical proofs to be given of many of the formulae involving

variance.

We go on to consider the problem of calculating the line of best fit for a
gset of data, by a method which could be used at school. The method will be
i{llustrated by a problem with three points only, but the method clearly
applies just as well to any number.

Example 9
Given the points (2,3), (4,5), (7,7) find the line of best fit, y = mx+c.

If the three points were collinear, we would be able to satisfy the 3

equations,
2m+ ¢ = 3
m+c = 5 (1)
Mm+c = T,
orAm=Y%,
where
A: 2 1 m = m ‘7= 3
4 1 c - 5
7 1 7

we need to find m, but these equations are inconsistent. If mx + ¢ is used

to estimate y the errors arxe

on +¢ -3 4m+c=-95 Tm+c- T.

How can we choose m and ¢ so as to minimise the sum of the squares of the

errors; ie to minimise

(2m + ¢ - 3)2 + (4m +c - 5)2 + (Mm +c - 7)2 ?

This is the square of the distance between P(3,5,7) and Q(2m + ¢, 4m + ¢, Tm + c)

[EETR -
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which is a variable point in the plane through O defined by

@,4,73 and ﬁ,1,1} )

A
PGs7)

{2,4,7}

{hhq

o c od

This means choosing Q so that PQ is perpendicular to {?,4,{} and {1,1,{1 3
so that

2(2n+c-3) + 4(4m+c-5) + (Tm+c-17), =0,
and PCm+c-3) + (Mm@+c-5) + (m+c-7), =0.
This means that
2 4 1 2m + ¢ - 3
101 1 m+c -5 = 0,
Mo + ¢ -7
T
or A(Am -%y) = 0
or 2T = aTn. (2)

It is remarkable that we use AT to convert the inconsistent equations(1)
to the consistent equations (2), which provide the solution needed.

m=(a")"" 2",

This will generalise. Also it is a practical formula in school if you have

access Lo a coupuler wilh BASIC.

At the beginning of my lecture I quoted a section of the didaktigche Grundsdtze
in the Austrian Lehrplan for mathematics. I hope that my exampleas will assist
you to carry out the excellent advice which this Lehrplan contains.
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